Resonance sweeping by a decelerating Galactic bar

Author:

Chiba Rimpei1ORCID,Friske Jennifer K S2,Schönrich Ralph3ORCID

Affiliation:

1. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU Oxford, UK

2. Ludwig-Maximilians-Universität, Fakultät für Physik Schellingstr. 4, D-80799 München, Germany

3. Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK

Abstract

ABSTRACT We provide the first quantitative evidence for the deceleration of the Galactic bar from local stellar kinematics in agreement with dynamical friction by a typical dark matter halo. The kinematic response of the stellar disc to a decelerating bar is studied using secular perturbation theory and test particle simulations. We show that the velocity distribution at any point in the disc affected by a naturally slowing bar is qualitatively different from that perturbed by a steadily rotating bar with the same current pattern speed Ωp and amplitude. When the bar slows down, its resonances sweep through phase space, trapping, and dragging along a portion of previously free orbits. This enhances occupation on resonances, but also changes the distribution of stars within the resonance. Due to the accumulation of orbits near the boundary of the resonance, the decelerating bar model reproduces with its corotation resonance the offset and strength of the Hercules stream in the local vR-vφ plane and the double-peaked structure of mean vR in the Lz–φ plane. At resonances other than the corotation, resonant dragging by a slowing bar is associated with a continuing increase in radial action, leading to multiple resonance ridges in the action plane as identified in the Gaia data. This work shows models using a constant bar pattern speed likely lead to qualitatively wrong conclusions. Most importantly we provide a quantitative estimate of the current slowing rate of the bar $\dot{\Omega }_{\rm p}= (-4.5 \pm 1.4) \, {\rm km}\, {\rm s}^{-1}\, {\rm kpc}^{-1}\, {\rm Gyr}^{-1}$ with additional systematic uncertainty arising from unmodelled impacts of e.g. spiral arms.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3