Chemical evolution of the Galactic bulge with different stellar populations

Author:

Molero M.,Matteucci F.,Spitoni E.ORCID,Rojas-Arriagada A.ORCID,Rich R. M.ORCID

Abstract

Context. The metallicity distribution function (MDF) of the Galactic bulge is characterized by a multi-peak shape, with a metal-poor peak centered at [Fe/H] ∼ −0.3 dex and a metal-rich peak centered at [Fe/H] ∼ +0.3 dex. The bimodality of the MDF is also reflected in the [α/Fe] versus [Fe/H] abundance ratios, suggesting the presence of different stellar populations in the bulge. Aims. In this work we aim to reproduce the observed MDF of the Galactic bulge by testing a scenario in which the metal-poor component of the bulge is formed by stars formed in situ, during a strong burst of star formation, while the metal-rich population is formed by stars created in situ during a second burst of star formation and/or stars accreted from the innermost part of the Galactic disk as an effect of a growing bar. Methods. We adopted a chemical evolution model that is able to follow the evolution of several chemical species with detailed nucleosynthesis prescriptions. In particular, because of the importance of the production of Fe in constraining the MDF, close attention is paid to the production of this element in both Type Ia supernovae and massive stars. In particular, we included yields from rotating massive stars with different rotational velocity prescriptions. Our model also takes the infall and outflow of gas into account, as well as the effect of stellar migration. Results are compared to ∼13 000 stars from the SDSS/APOGEE survey that belong to the region located at a Galactocentric distance RGC ≤ 3.5 kpc. Results. We successfully reproduce the observed double-peak shape of the bulge MDF as well as the abundance trends of the α elements relative to Fe by assuming both (i) a multi-burst star formation history with a quenching of the first burst of ∼102 Myr and (ii) migration of stars from the innermost part of the Milky Way disk, as an effect of a growing bar. According to our results, the fraction of the stellar mass of the bulge-bar that belongs to the inner disk is ∼40%. In terms of the nucleosynthesis, we conclude that models that assume either no rotation for massive stars or a distribution of rotational velocities that favors slow rotation at high metallicities best reproduce the observed MDF as well as the [α/Fe] and the [Ce/Fe] versus [Fe/H] abundance patterns.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3