Age dating the Galactic bar with the nuclear stellar disc

Author:

Baba Junichi1,Kawata Daisuke2ORCID

Affiliation:

1. National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan

2. Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK

Abstract

ABSTRACT From the decades of the theoretical studies, it is well known that the formation of the bar triggers the gas funnelling into the central sub-kpc region and leads to the formation of a kinematically cold nuclear stellar disc (NSD). We demonstrate that this mechanism can be used to identify the formation epoch of the Galactic bar, using an N-body/hydrodynamics simulation of an isolated Milky Way–like galaxy. As shown in many previous literature, our simulation shows that the bar formation triggers an intense star formation for ∼1 Gyr in the central region and forms an NSD. As a result, the oldest age limit of the NSD is relatively sharp, and the oldest population becomes similar to the age of the bar. Therefore, the age distribution of the NSD tells us the formation epoch of the bar. We discuss that a major challenge in measuring the age distribution of the NSD in the Milky Way is contamination from other non-negligible stellar components in the central region, such as a classical bulge component. We demonstrate that because the NSD is kinematically colder than the other stellar populations in the Galactic central region, the NSD population can be kinematically distinguished from the other stellar populations, if the 3D velocity of tracer stars is accurately measured. Hence, in addition to the line-of-sight velocities from spectroscopic surveys, the accurate measurements of the transverse velocities of stars are necessary, and hence the near-infrared space astrometry mission, JASMINE, would play a crucial role to identify the formation epoch of the Galactic bar. We also discuss that the accuracy of stellar age estimation is also crucial to measure the oldest limit of the NSD stellar population.

Funder

National Astronomical Observatory of Japan

Japan Society for the Promotion of Science

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clues to growth and disruption of two neighbouring spiral arms of the Milky Way;Monthly Notices of the Royal Astronomical Society;2024-08-29

2. Why does the Milky Way have a bar?;Monthly Notices of the Royal Astronomical Society;2024-08-07

3. Chemical evolution of the Galactic bulge with different stellar populations;Astronomy & Astrophysics;2024-07

4. Did the Gaia Enceladus/Sausage merger form the Milky Way’s bar?;Monthly Notices of the Royal Astronomical Society;2024-05-13

5. MHD Simulation in Galactic Center Region with Radiative Cooling and Heating;The Astrophysical Journal;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3