Mapping the X-ray variability of GRS 1915 + 105 with machine learning

Author:

Ricketts Benjamin J123,Steiner James F2,Garraffo Cecilia2,Remillard Ronald A4,Huppenkothen Daniela3ORCID

Affiliation:

1. University of Southampton, University Rd, Highfield , Southampton, SO17 1BJ, UK

2. Harvard and Smithsonian Center for Astrophysics , 60 Garden St, Cambridge, MA, 02138, USA

3. Netherlands Institute for Space Research , Niels Bohrweg 4, 2333 CA, Leiden, Netherlands

4. MIT Kavli Institute for Astrophysics and Space Research , 70 Vassar St, Cambridge, MA 02139, USA

Abstract

ABSTRACT Black hole X-ray binary systems (BHBs) contain a close companion star accreting onto a stellar-mass black hole. A typical BHB undergoes transient outbursts during which it exhibits a sequence of long-lived spectral states, each of which is relatively stable. GRS 1915 + 105 is a unique BHB that exhibits an unequaled number and variety of distinct variability patterns in X-rays. Many of these patterns contain unusual behaviour not seen in other sources. These variability patterns have been sorted into different classes based on count rate and colour characteristics by previous work. In order to remove human decision-making from the pattern-recognition process, we employ an unsupervised machine learning algorithm called an auto-encoder to learn what classifications are naturally distinct by allowing the algorithm to cluster observations. We focus on observations taken by the Rossi X-ray Timing Explorer’s Proportional Counter Array. We find that the auto-encoder closely groups observations together that are classified as similar by previous work, but that there is reasonable grounds for defining each class as made up of components from three groups of distinct behaviour.

Funder

NASA

NWO

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3