Abstract
Abstract
Kilonovae are likely a key site of heavy r-process element production in the Universe, and their optical/infrared spectra contain insights into both the properties of the ejecta and the conditions of the r-process. However, the event GW170817/AT2017gfo is the only kilonova so far with well-observed spectra. To understand the diversity of absorption features that might be observed in future kilonovae spectra, we use the TARDIS Monte Carlo radiative transfer code to simulate a suite of optical spectra spanning a wide range of kilonova ejecta properties and r-process abundance patterns. To identify the most common and prominent absorption lines, we perform dimensionality reduction using an autoencoder, and we find spectra clusters in the latent space representation using a Bayesian Gaussian Mixture model. Our synthetic kilonovae spectra commonly display strong absorption by strontium 38Sr ii, yttrium 38Y ii, and zirconium 40Zr i–ii, with strong lanthanide contributions at low electron fractions (Y
e ≲ 0.25). When a new kilonova is observed, our machine-learning framework will provide context on the dominant absorption lines and key ejecta properties, helping to determine where this event falls within the larger “zoo” of kilonovae spectra.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
American Astronomical Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献