Inhomogeneous Galactic chemical evolution: modelling ultra-faint dwarf galaxies of the Large Magellanic Cloud

Author:

Alexander R K123ORCID,Vincenzo F13ORCID,Ji A P34ORCID,Richstein H5,Jordan C J1,Gibson B K13

Affiliation:

1. E.A. Milne Centre for Astrophysics, University of Hull , Hull, HU6 7RX, UK

2. Centre of Excellence for Data Science, AI, and Modelling (DAIM), University of Hull , Cottingham Road, Kingston-upon-Hull, HU6 7RX, UK

3. Joint Institute for Nuclear Astrophysics, Center for the Evolution of the Elements (JINA-CEE) , 640 S Shaw Lane, East Lansing, MI 48824, USA

4. Department of Astronomy & Astrophysics, University of Chicago , 5640 S Ellis Avenue, Chicago, IL 60637, USA

5. Department of Astronomy, University of Virginia , 530 McCormick Road, Charlottesville, VA 22904, USA

Abstract

ABSTRACT Ultra-faint dwarf galaxies (UFDs) are among the oldest and most metal-poor galaxies in the cosmos, observed to contain no gas and a high dark matter mass fraction. Understanding the chemical abundance dispersion in such extreme environments could shed light on the very first generations of stars. We present a novel inhomogeneous chemical evolution model, i-getool, that we apply to two UFDs, Carina II and Reticulum II, both satellites of the Large Magellanic Cloud. Our model is based on the Monte Carlo sampling of the initial mass function as star formation proceeds in different gas cells of the galaxy volume. We account for the chemical enrichment of supernova (SN) bubbles as they spread in the interstellar medium, causing dispersion in the elemental abundances. We recreate the abundance patterns of α- and odd-Z elements, predicting two sequences in [C/Fe] and [N/Fe] at all metallicities. Our models underestimate [C/Fe] and [Ti/Fe] because of the large uncertainty in the adopted stellar nucleosynthesis yields. We discuss that the observed C and N abundances had likely been affected by internal mixing processes, which changed the initial surface abundances in the red giants. Our SN feedback scheme is responsible for driving galactic outflows, which quench the star formation activity at early times. We predict an average outflow mass-loading factor ≈103, which extrapolates towards very low galaxy stellar masses the trend observed at high masses. Finally, by combining our model with the MIST isochrone database, we compare our synthetic colour–magnitude diagrams to observations.

Funder

Science and Technology Facilities Council

European Union

Horizon 2020

NASA

Space Telescope Science Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3