Metallicity Distribution Functions of 13 Ultra-faint Dwarf Galaxy Candidates from Hubble Space Telescope Narrowband Imaging

Author:

Fu Sal WanyingORCID,Weisz Daniel R.ORCID,Starkenburg Else,Martin NicolasORCID,Savino AlessandroORCID,Boylan-Kolchin MichaelORCID,Côté PatrickORCID,Dolphin Andrew E.ORCID,Ji Alexander P.ORCID,Longeard Nicolas,Mateo Mario L.,Patel EktaORCID,Sandford Nathan R.ORCID

Abstract

Abstract We present uniformly measured stellar metallicities of 463 stars in 13 Milky Way (MW) ultra-faint dwarf galaxies (UFDs; M V = −7.1 to −0.8) using narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope. This represents the largest homogeneous set of stellar metallicities in UFDs, increasing the number of metallicities in these 13 galaxies by a factor of 5 and doubling the number of metallicities in all known MW UFDs. We provide the first well-populated MDFs for all galaxies in this sample, with 〈[Fe/H]〉 ranging from −3.0 to −2.0 dex, and σ [Fe/H] ranging from 0.3–0.7 dex. We find a nearly constant [Fe/H]∼ −2.6 over 3 decades in luminosity (∼102–105 L ), suggesting that the mass–metallicity relationship does not hold for such faint systems. We find a larger fraction (24%) of extremely metal-poor ([Fe/H]< −3) stars across our sample compared to the literature (14%), but note that uncertainties in our most metal-poor measurements make this an upper limit. We find 19% of stars in our UFD sample to be metal-rich ([Fe/H] > −2), consistent with the sum of literature spectroscopic studies. MW UFDs are known to be predominantly >13 Gyr old, meaning that all stars in our sample are truly ancient, unlike metal-poor stars in the MW, which have a range of possible ages. Our UFD metallicities are not well matched to known streams in the MW, providing further evidence that known MW substructures are not related to UFDs. We include a catalog of our stars to encourage community follow-up studies, including priority targets for ELT-era observations.

Funder

NSFGRFP

VIDI

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3