λ And: a post-main-sequence wind from a solar-mass star

Author:

Ó Fionnagáin D1ORCID,Vidotto A A1ORCID,Petit P2,Neiner C3ORCID,Manchester IV W4,Folsom C P2,Hallinan G5

Affiliation:

1. School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland

2. IRAP, Université de Toulouse, CNRS, UPS, CNES, 14 Avenue Edouard Belin, F-31400 Toulouse, France

3. LESIA, Paris Observatory, PSL University, CNRS, Sorbonne University, Université de Paris, 5 place Jules Janssen, F-92195 Meudon, France

4. Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA

5. Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

ABSTRACT We investigate the wind of λ And, a solar-mass star that has evolved off the main sequence becoming a subgiant. We present spectropolarimetric observations and use them to reconstruct the surface magnetic field of λ And. Although much older than our Sun, this star exhibits a stronger (reaching up to 83 G) large-scale magnetic field, which is dominated by the poloidal component. To investigate the wind of λ And, we use the derived magnetic map to simulate two stellar wind scenarios, namely a ‘polytropic wind’ (thermally driven) and an ‘Alfven-wave-driven wind’ with turbulent dissipation. From our 3D magnetohydrodynamics simulations, we calculate the wind thermal emission and compare it to previously published radio observations and more recent Very Large Array observations, which we present here. These observations show a basal sub-mJy quiescent flux level at ∼5 GHz and, at epochs, a much larger flux density (>37 mJy), likely due to radio flares. By comparing our model results with the radio observations of λ And, we can constrain its mass-loss rate $\dot{M}$. There are two possible conclusions. (1) Assuming the quiescent radio emission originates from the stellar wind, we conclude that λ And has $\dot{M} \simeq 3 \times 10^{-9}$ M⊙ yr −1, which agrees with the evolving mass-loss rate trend for evolved solar-mass stars. (2) Alternatively, if the quiescent emission does not originate from the wind, our models can only place an upper limit on mass-loss rates, indicating that $\dot{M} \lesssim 3 \times 10^{-9}$ M⊙ yr −1.

Funder

European Research Council

Horizon 2020 Framework Programme

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3