Hierarchical generative models for star clusters from hydrodynamical simulations

Author:

Torniamenti Stefano123ORCID,Pasquato Mario45,Di Cintio Pierfrancesco678ORCID,Ballone Alessandro123ORCID,Iorio Giuliano12ORCID,Artale M Celeste9ORCID,Mapelli Michela123ORCID

Affiliation:

1. Physics and Astronomy Department Galileo Galilei, University of Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy

2. INFN- Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

3. INAF, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy

4. Département de Physique, Université de Montréal, Montreal, QC H3T 1J4, Canada

5. Center for Astro, Particle and Planetary Physics (CAP3), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

6. Physics and Astronomy Department, University of Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy

7. INFN - Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy

8. CREF, Via Panisperna 89A, I-00184 Rome, Italy

9. Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstrasse 25/8, A-6020 Innsbruck, Österreich, Austria

Abstract

ABSTRACT Star formation in molecular clouds is clumpy, hierarchically subclustered. Fractal structure also emerges in hydrodynamical simulations of star-forming clouds. Simulating the formation of realistic star clusters with hydrodynamical simulations is a computational challenge, considering that only the statistically averaged results of large batches of simulations are reliable, due to the chaotic nature of the gravitational N-body problem. While large sets of initial conditions for N-body runs can be produced by hydrodynamical simulations of star formation, this is prohibitively expensive in terms of computational time. Here, we address this issue by introducing a new technique for generating many sets of new initial conditions from a given set of star masses, positions, and velocities from a hydrodynamical simulation. We use hierarchical clustering in phase space to inform a tree representation of the spatial and kinematic relations between stars. This constitutes the basis for the random generation of new sets of stars which share the clustering structure of the original ones but have individually different masses, positions, and velocities. We apply this method to the output of a number of hydrodynamical star-formation simulations, comparing the generated initial conditions to the original ones through a series of quantitative tests, including comparing mass and velocity distributions and fractal dimension. Finally, we evolve both the original and the generated star clusters using a direct N-body code, obtaining a qualitatively similar evolution.

Funder

European Union

Horizon 2020

Marie Sklodowska-Curie

NYU

European Research Council

MIUR

FWF Austrian Science Fund

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3