Binary Star Evolution in Different Environments: Filamentary, Fractal, Halo, and Tidal Tail Clusters

Author:

Pang XiaoyingORCID,Wang YifanORCID,Tang Shih-YunORCID,Rui YichengORCID,Bai Jing,Li Chengyuan,Feng FaboORCID,Kouwenhoven M. B. N.ORCID,Chen Wen-PingORCID,Chuang Rwei-juORCID

Abstract

Abstract Using membership of 85 open clusters from previous studies based on Gaia Data Release 3 data, we identify binary candidates in the color–magnitude diagram for systems with mass ratio q > 0.4. The binary fraction is corrected for incompleteness at different distances due to the Gaia angular resolution limit. We find a decreasing binary fraction with increasing cluster age, with substantial scatter. For clusters with a total mass >200 M , the binary fraction is independent of cluster mass. The binary fraction depends strongly on stellar density. Among the four types of cluster environments, the lowest-density filamentary and fractal stellar groups have the highest mean binary fraction: 23.6% and 23.2%, respectively. The mean binary fraction in tidal tail clusters is 20.8% and is lowest in the densest halo-type clusters: 14.8%. We find clear evidence of early disruptions of binary stars in the cluster sample. The radial binary fraction depends strongly on the clustercentric distance across all four types of environments, with the smallest binary fraction within the half-mass radius r h and increasing toward a few r h. Only hints of mass segregation are found in the target clusters. The observed amounts of mass segregation are not significant enough to generate a global effect inside the target clusters. We evaluate the bias of unresolved binary systems (assuming a primary mass of 1 M ) in 1D tangential velocity, which is 0.1–1 km s−1. Further studies are required to characterize the internal star cluster kinematics using Gaia proper motions.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ NSFC ∣ Key Programme

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3