A machine learning approach for GRB detection in AstroSat CZTI data

Author:

Abraham Sheelu12,Mukund Nikhil23,Vibhute Ajay24,Sharma Vidushi2ORCID,Iyyani Shabnam2,Bhattacharya Dipankar2,Rao A R5ORCID,Vadawale Santosh6,Bhalerao Varun7

Affiliation:

1. Marthoma College, Chungathara, 679334 Nilambur, Kerala

2. Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, 411007 Pune, India

3. Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstraße 38, D-30167 Hannover, Germany

4. Savitribhai Phule Pune University, 411007 Pune, Maharashtra, India

5. Tata Institute of Fundamental Research, 400005 Mumbai, India

6. Physical Research Laboratory, Ahmedabad, 380009 Gujarat, India

7. Indian Institute of Technology, 400076 Bombay, India

Abstract

ABSTRACT We present a machine learning (ML) based method for automated detection of Gamma-Ray Burst (GRB) candidate events in the range 60–250 keV from the AstroSat Cadmium Zinc Telluride Imager data. We use density-based spatial clustering to detect excess power and carry out an unsupervised hierarchical clustering across all such events to identify the different light curves present in the data. This representation helps us to understand the instrument’s sensitivity to the various GRB populations and identify the major non-astrophysical noise artefacts present in the data. We use Dynamic Time Warping (DTW) to carry out template matching, which ensures the morphological similarity of the detected events with known typical GRB light curves. DTW alleviates the need for a dense template repository often required in matched filtering like searches. The use of a similarity metric facilitates outlier detection suitable for capturing previously unmodelled events. We briefly discuss the characteristics of 35 long GRB candidates detected using the pipeline and show that with minor modifications such as adaptive binning, the method is also sensitive to short GRB events. Augmenting the existing data analysis pipeline with such ML capabilities alleviates the need for extensive manual inspection, enabling quicker response to alerts received from other observatories such as the gravitational-wave detectors.

Funder

CSIR

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3