Optical spectra of FO Aquarii during low and high accretion rates

Author:

Kennedy M R1ORCID,Garnavich P M2ORCID,Littlefield C2ORCID,Marsh T R3,Callanan P4,Breton R P1ORCID,Augusteijn T5,Wagner R M6,Ashley R P3,Neric M7

Affiliation:

1. Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9P, UK

2. Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA

3. Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK

4. Department of Physics, University College Cork, Cork, Ireland

5. Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma, Spain

6. Department of Astronomy, Ohio State University, Columbus, OH 43210, USA

7. School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA

Abstract

ABSTRACT Between 2016 May and 2018 September, the intermediate polar (IP) FO Aquarii exhibited two distinct low states and one failed low state. We present optical spectroscopy of FO Aquarii throughout this period, making this the first detailed study of an accretion disc during a low state in any IP. Analysis of these data confirm that the low states are the result of a drop in the mass transfer rate between the secondary star and the magnetic white dwarf primary, and are characterized by a decrease in the system’s brightness coupled with a change of the system’s accretion structures from an accretion disc-fed geometry to a combination of disc-fed and ballistic stream-fed accretion, and that effects from accretion on to both magnetic poles become detectable. The failed low state only displays a decrease in brightness, with the accretion geometry remaining primarily disc-fed. We also find that the WD appears to be exclusively accretion disc-fed during the high state. There is evidence for an outflow close to the impact region between the ballistic stream and the disc which is detectable in all of the states. Finally, there is marginal evidence for narrow high-velocity features in the H α emission line during the low states which may arise due to an outflow from the WD. These features may be evidence of a collimated jet, a long predicted yet elusive feature of cataclysmic variables.

Funder

Royal Society

Science Foundation Ireland

University College Cork

National Aeronautics and Space Administration

H2020 European Research Council

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3