Hitting a New Low: The Unique 28 hr Cessation of Accretion in the TESS Light Curve of YY Dra (DO Dra)

Author:

Hill Katherine L.ORCID,Littlefield ColinORCID,Garnavich PeterORCID,Scaringi Simone,Szkody PaulaORCID,Mason Paul A.ORCID,Kennedy Mark R.ORCID,Shaw Aarran W.ORCID,Covington Ava E.

Abstract

Abstract We present the Transiting Exoplanet Surveying Satellite light curve of the intermediate polar YY Draconis (YY Dra, also known as DO Dra). The power spectrum indicates that while there is stream-fed accretion for most of the observational period, there is a day-long, flat-bottomed low state at the beginning of 2020 during which the only periodic signal is ellipsoidal variation and there is no appreciable flickering. We interpret this low state to be a complete cessation of accretion, a phenomenon that has been observed only once before in an intermediate polar. Simultaneous ground-based observations of this faint state establish that when accretion is negligible, YY Dra fades to g = 17.37 ± 0.12, which we infer to be the magnitude of the combined photospheric contributions of the white dwarf and its red dwarf companion. Using survey photometry, we identify additional low states in 2018–2019 during which YY Dra repeatedly fades to—but never below—this threshold. This implies relatively frequent cessations in accretion. Spectroscopic observations during future episodes of negligible accretion can be used to directly measure the field strength of the white dwarf by Zeeman splitting. Separately, we search newly available catalogs of variable stars in an attempt to resolve the long-standing dispute over the proper identifier of this system.

Funder

National Science Foundation

Irish Research Council for Science, Engineering and Technology

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3