Matching the mass function of Milky Way satellites in competing dark matter models

Author:

Lovell Mark R1ORCID,Zavala Jesús1

Affiliation:

1. Centre for Astrophysics and Cosmology, Science Institute, University of Iceland , Dunhaga 5, 107 Reykjavík, Iceland

Abstract

ABSTRACT Any successful model of dark matter must explain the diversity of observed Milky Way (MW) satellite density profiles, from very dense ultrafaints to low-density satellites so large that they could be larger than their inferred dark matter haloes. Predictions for these density profiles are complicated by the limitations of simulation resolution in the stripping of subhaloes by the MW system. We consider cold dark matter (CDM), warm dark matter (WDM, 3.3 keV thermal relic power spectrum), and a self-interacting dark matter model (SIDM) that induces gravothermal collapse in low-mass subhaloes. Using N-body simulations combined with a halo stripping algorithm, we find that most CDM and WDM subhaloes of mass >108 ${\, \rm M_\odot }$ are large enough after stripping to fit most satellites; however, the required amount of stripping often requires a stronger tidal field than is available on the subhalo’s orbit. The lower concentrations of WDM subhaloes enable more stripping to take place, even on orbits with large pericentres. SIDM cores offer the best fits to massive, low-density satellites at the expense of predicting >109 ${\, \rm M_\odot }$ subhaloes to host low-density satellites with no observed analogue. The agreement of the total number of satellites with observations in CDM and WDM depends strongly on the assumptions made to draw the observational estimates. We conclude that an SIDM model must have a very high velocity-dependent cross-section in order to match all satellites, and that WDM offers a marginally better fit than CDM to the MW satellite mass function.

Funder

Icelandic Research Fund

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3