Varying primordial state fractions in exo- and endothermic SIDM simulations of Milky Way-mass haloes

Author:

Leonard Aidan1,O’Neil Stephanie1ORCID,Shen Xuejian1ORCID,Vogelsberger Mark12ORCID,Rosenstein Olivia1,Shangguan Haotian3,Teng Yuanhong4,Hu Jiayi5

Affiliation:

1. Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , Cambridge, MA 02139 , USA

2. The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Massachusetts Institute of Technology , Cambridge, MA 02139 , USA

3. Department of Computer Science, Boston University , Boston, MA 02215 , USA

4. University of Science and Technology of China , Hefei, Anhui 230026 , China

5. Department of Mathematics, Columbia University , New York, NY 10027 , USA

Abstract

ABSTRACT Self-interacting dark matter (SIDM) is increasingly studied as a potential solution to small-scale discrepancies between simulations of cold dark matter (CDM) and observations. We examine a physically motivated two-state SIDM model with both elastic and inelastic scatterings. In particular, endothermic, exothermic, and elastic scattering have equal transfer cross-sections at high relative velocities ($v_{\rm rel}\gtrsim 400~{\rm km\, s}^{-1})$. In a suite of cosmological zoom-in simulation of Milky Way-size haloes, we vary the primordial state fractions to understand the impact of inelastic dark matter self-interactions on halo structure and evolution. In particular, we test how the initial conditions impact the present-day properties of dark matter haloes. Depending on the primordial state fraction, scattering reactions will be dominated by either exothermic or endothermic effects for high and low initial excited state fractions, respectively. We find that increasing the initial excited fraction reduces the mass of the main halo, as well as the number of subhaloes on all mass scales. The main haloes are cored, with lower inner densities and higher outer densities compared with CDM. Additionally, we find that the shape of the main halo becomes more spherical the higher the initial excited state fraction is. Finally, we show that the number of satellites steadily decreases with initial excited state fraction across all satellite masses.

Funder

NASA

NSF

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3