Chasing rainbows and ocean glints: Inner working angle constraints for the Habitable Worlds Observatory

Author:

Vaughan Sophia R1ORCID,Gebhard Timothy D23,Bott Kimberly456,Casewell Sarah L7,Cowan Nicolas B8ORCID,Doelman David S910,Kenworthy Matthew9ORCID,Mazoyer Johan11,Millar-Blanchaer Maxwell A12,Trees Victor J H1314,Stam Daphne M15,Absil Olivier16,Altinier Lisa17,Baudoz Pierre18,Belikov Ruslan19,Bidot Alexis20,Birkby Jayne L21ORCID,Bonse Markus J22,Brandl Bernhard9,Carlotti Alexis20,Choquet Elodie17,van Dam Dirk9ORCID,Desai Niyati23,Fogarty Kevin19,Fowler J24,van Gorkom Kyle25,Gutierrez Yann182627,Guyon Olivier25282930,Haffert Sebastiaan Y25,Herscovici-Schiller Olivier26,Hours Adrien20,Juanola-Parramon Roser3132,Kleisioti Evangelia933,König Lorenzo16,van Kooten Maaike34,Krasteva Mariya35,Laginja Iva18,Landman Rico9,Leboulleux Lucie20,Mouillet David20,N’Diaye Mamadou36,Por Emiel H37,Pueyo Laurent37,Snik Frans9

Affiliation:

1. Astrophysics, Department of Physics, University of Oxford , Denys Wilkinson Building, Keble Road, Oxford OX1 3RH , UK

2. Max Planck Institute for Intelligent Systems , Max-Planck-Ring 4, 72076 Tübingen , Germany

3. ETH Zurich, Institute for Particle Physics and Astrophysics , Wolfgang-Pauli-Str 27, 8092 Zurich , Switzerland

4. Department of Earth and Planetary Sciences, University of California Riverside , 900 University Ave., Riverside, CA 92521 , USA

5. NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team , Bldg. 3910, 15th Ave NE, University of Washington, Seattle, WA 98195 , USA

6. NASA Nexus for Exoplanet System Science, Terrestrial Polarization Team , 4111 Libra Drive, University of Central Florida, Orlando, FL 32826 , USA

7. Centre for Exoplanet Research, School of Physics and Astronomy, University of Leicester , University Road, Leicester, LE1 7RH , UK

8. Department of Earth and Planetary Sciences and Department of Physics, McGill University , 3600 rue University, Montréal, QC, H3A 2T8 , Canada

9. Leiden Observatory, Leiden University , P.O. Box 9513, 2300 RA Leiden, the Netherlands

10. SRON Netherlands Institute for Space Research , Niels Bohrweg 4, 2333 CA , Leiden, the Netherlands

11. LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université , Université de Paris , 5 Place Jules Janssen, 92195 Meudon, France

12. Department of Physics, University of California , Broida Hall , Santa Barbara, CA 93106, USA

13. Department of Geoscience and Remote Sensing, Delft University of Technology , Stevinweg 1, 2628 CN , Delft, the Netherlands

14. Royal Netherlands Meteorological Institute (KNMI) , Utrechtseweg 297, 3731 GA , de Bilt, the Netherlands

15. Delft University of Technology , Kluyverweg 1, 2629 HS Delft, the Netherlands

16. STAR Institute, Université de Liége , Allée du six Août 19c, 4000 Liége, Belgium

17. Aix Marseille Université, CNRS, CNES, LAM , 38 rue Frédéric Joliot-Curie, 13388 Cedex 13, Marseille, France

18. LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris , 5 Place Jules Janssen, 92195 Meudon, France

19. NASA Ames Research Center , Bldg. 245, Moffett Field, USA

20. Université Grenoble Alpes, CNRS, IPAG , 25 Av. des Martyrs, 38000 Grenoble, France

21. Astrophysics, Department of Physics, University of Oxford , Denys Wilkinson Building, Keble Road , Oxford OX1 3RH, UK

22. ETH Zurich, Institute for Particle Physics and Astrophysics , Wolfgang-Pauli-Str 27, 8092 Zurich, Switzerland

23. Department of Astronomy, California Institute of Technology , 1200 East California Boulevard , Pasadena, CA, 91125, USA

24. Department of Astronomy and Astrophysics, University of California , 1156 High Street , Santa Cruz, CA 95064, USA

25. Steward Observatory, University of Arizona , 933 North Cherry Avenue , Tucson, AZ 85719, USA

26. DTIS, ONERA, Université Paris Saclay , 6 Chemin de la Vauve aux Granges, 91123 Palaiseau, France

27. DOTA, ONERA , 29 avenue de la Division Leclerc, 92322 Châtillon, France

28. Subaru Telescope, NAOJ , 650 N Aohoku Pl, HI 96720 , USA

29. College of Optical Sciences, University of Arizona , 1630 E University Blvd , Tucson, AZ 85721, USA

30. Astrobiology Center , 2 Chome-21-1 , Osawa, Mitaka, Tokyo 181-8588, Japan

31. NASA Goddard Space Flight Center , 8800 Greenbelt Rd , Greenbelt, MD 20771, USA

32. University of Maryland Baltimore County , 1000 Hilltop Cir , Baltimore, MD 21250, USA

33. Faculty of Aerospace Engineering, TU Delft , Building 62, Kluyverweg 1, 2629 HS Delft, the Netherlands

34. National Research Council Canada, Herzberg Astronomy and Astrophysics Research Center , 5071 W Saanich Rd , Victoria, B.C., Canada

35. European Space Agency, ESTEC , Keplerlaan 1, 2200 AG Noordwijk, the Netherlands

36. Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange , Boulevard de l'Observatoire , Nice, France

37. Space Telescope Science Institute , 3700 San Martin Drive , Baltimore, MD 21218, USA

Abstract

ABSTRACT NASA is engaged in planning for a Habitable Worlds Observatory (HabWorlds ), a coronagraphic space mission to detect rocky planets in habitable zones and establish their habitability. Surface liquid water is central to the definition of planetary habitability. Photometric and polarimetric phase curves of starlight reflected by an exoplanet can reveal ocean glint, rainbows, and other phenomena caused by scattering by clouds or atmospheric gas. Direct imaging missions are optimized for planets near quadrature, but HabWorlds ’ coronagraph may obscure the phase angles where such optical features are strongest. The range of accessible phase angles for a given exoplanet will depend on the planet’s orbital inclination and/or the coronagraph’s inner working angle (IWA). We use a recently created catalog relevant to HabWorlds of 164 stars to estimate the number of exo-Earths that could be searched for ocean glint, rainbows, and polarization effects due to Rayleigh scattering. We find that the polarimetric Rayleigh scattering peak is accessible in most of the exo-Earth planetary systems. The rainbow due to water clouds at phase angles of ∼20○ − 60○ would be accessible with HabWorlds  for a planet with an Earth equivalent instellation in ∼46 systems, while the ocean glint signature at phase angles of ∼130○ − 170○ would be accessible in ∼16 systems, assuming an IWA = 62 mas (3λ/D). Improving the IWA = 41 mas (2λ/D) increases accessibility to rainbows and glints by factors of approximately 2 and 3, respectively. By observing these scattering features, HabWorlds could detect a surface ocean and water cycle, key indicators of habitability.

Funder

European Union

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling reflected polarized light from close-in giant exoplanet WASP-96b using PolHEx (Polarization of hot exoplanets);Monthly Notices of the Royal Astronomical Society;2023-11-03

2. FALCO simulations of high-contrast polarimetry with the Nancy Grace Roman Space Telescope coronagraph instrument;Techniques and Instrumentation for Detection of Exoplanets XI;2023-10-05

3. Integrated photonic-based coronagraphic systems for future space telescopes;Techniques and Instrumentation for Detection of Exoplanets XI;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3