The isothermal evolution of a shock-filament interaction

Author:

Goldsmith K J A1,Pittard J M1

Affiliation:

1. School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK

Abstract

ABSTRACTStudies of filamentary structures that are prevalent throughout the interstellar medium are of great significance to a number of astrophysical fields. Here, we present 3D hydrodynamic simulations of shock-filament interactions where the equation of state has been softened to become almost isothermal. We investigate the effect of such an isothermal regime on the interaction (where both the shock and filament are isothermal), and we examine how the nature of the interaction changes when the orientation of the filament, the shock Mach number, and the filament density contrast are varied. We find that only sideways-oriented filaments with a density contrast of 102 form a three-rolled structure, dissimilar to the results of a previous study. Moreover, the angle of orientation of the filament plays a large role in the evolution of the filament morphology: the greater the angle of orientation, the longer and less turbulent the wake. Turbulent stripping of filament material leading to fragmentation of the core occurs in most filaments; however, filaments orientated at an angle of 85° to the shock front do not fragment and are longer lived. In addition, values of the drag time are influenced by the filament length, with longer filaments being accelerated faster than shorter ones. Furthermore, filaments in an isothermal regime exhibit faster acceleration than those struck by an adiabatic shock. Finally, we find that the drag and mixing times of the filament increase as the angle of orientation of the filament is increased.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3