Momentum and energy injection by a wind-blown bubble into an inhomogeneous interstellar medium

Author:

Pittard J M1ORCID

Affiliation:

1. School of Physics and Astronomy, University of Leeds , Woodhouse Lane, Leeds LS2 9JT, UK

Abstract

Abstract We investigate the effect of mass-loading from embedded clouds on the evolution of wind-blown bubbles. We use 1D hydrodynamical calculations and assume that the clouds are numerous enough that they can be treated in the continuous limit, and that rapid mixing occurs so that the injected mass quickly merges with the global flow. The destruction of embedded clouds adds mass into the bubble, increasing its density. Mass-loading increases the temperature of the unshocked stellar wind due to the frictional drag, and reduces the temperature of the hot shocked gas as the available thermal energy is shared between more particles. Mass-loading may increase or decrease the volume-averaged bubble pressure. Mass-loaded bubbles are smaller, have less retained energy and lower radial momentum, but in all cases examined are still able to do significant PdV work on the swept-up gas. In this latter respect, the bubbles more closely resemble energy-conserving bubbles than the momentum-conserving-like behaviour of ‘quenched’ bubbles.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3