Evolving R Coronae Borealis stars with mesa

Author:

Lauer Amber12,Chatzopoulos Emmanouil1,Clayton Geoffrey C1ORCID,Frank Juhan1,Marcello Dominic C1

Affiliation:

1. Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

2. Triangle Universities Nuclear Lab, Duke University, Durham, NC 27710, USA

Abstract

ABSTRACT The R Coronae Borealis (RCB) stars are rare hydrogen-deficient, carbon-rich supergiants. They undergo extreme, irregular declines in brightness of many magnitudes due to the formation of thick clouds of carbon dust. It is thought that RCB stars result from the mergers of CO/He white dwarf (WD) binaries. We constructed post-merger spherically symmetric models computed with the mesa code, and then followed the evolution into the region of the Hertzsprung-Russell (H−R) diagram where the RCB stars are located. We also investigated nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed. We have also discovered that the N abundance depends sensitively on the peak temperature in the He-burning shell. Our mesa modelling consists of engineering the star by adding He-WD material to an initial CO-WD model, and then following the post-merger evolution using a nuclear-reaction network to match the observed RCB abundances as it expands and cools to become an RCB star. These new models are more physical because they include rotation, mixing, mass-loss, and nucleosynthesis within mesa. We follow the later evolution beyond the RCB phase to determine the stars’ likely lifetimes. The relative numbers of known RCB and extreme helium stars correspond well to the lifetimes predicted from the mesa models. In addition, most of computed abundances agree very well with the observed range of abundances for the RCB class.

Funder

National Science Foundation

Louisiana State University

Administration for Community Living

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3