The Asteroseismological Richness of RCB and dLHdC Stars

Author:

Wong Tin Long SunnyORCID,Bildsten LarsORCID

Abstract

Abstract RCB stars are L ≈ 104 L solar-mass objects that can exhibit large periods of extinction from dust ejection episodes. Many exhibit semi-regular pulsations in the range of 30–50 days with semi-amplitudes of 0.05–0.3 mag. Space-based photometry has discovered that solar-like oscillations are ubiquitous in hydrogen-dominated stars that have substantial outer convective envelopes, so we explore the hypothesis that the pulsations in RCB stars and the closely related dustless hydrogen-deficient carbon (dLHdC) stars, which have large convective outer envelopes of nearly pure helium, have a similar origin. Through stellar modeling and pulsation calculations, we find that the observed periods and amplitudes of these pulsations follows the well-measured phenomenology of their H-rich brethren. In particular, we show that the observed modes are likely of angular orders l = 0, 1, and 2 and predominantly of an acoustic nature (i.e., p-modes with low radial order). The modes with largest amplitude are near the acoustic cutoff frequency appropriately rescaled to the helium-dominated envelope, and the observed amplitudes are consistent with that seen in high-luminosity (L > 103 L ) H-rich giants. We also find that for T eff ≳ 5400 K, an hydrogen-deficient carbon stellar model exhibits a radiative layer between two outer convective zones, creating a g-mode cavity that supports much longer period (≈100 days) oscillations. Our initial work was focused primarily on the adiabatic modes, but we expect that subsequent space-based observations of these targets (e.g., with TESS or Plato) are likely to lead to a larger set of detected frequencies that would allow for a deeper study of the interiors of these rare stars.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3