An Infrared Census of R Coronae Borealis Stars II—Spectroscopic Classifications and Implications for the Rate of Low-mass White Dwarf Mergers

Author:

Karambelkar Viraj R.ORCID,Kasliwal Mansi M.ORCID,Tisserand Patrick,Anand ShreyaORCID,Ashley Michael C. B.,Bildsten LarsORCID,Clayton Geoffrey C.ORCID,Crawford Courtney C.,De KishalayORCID,Earley Nicholas,Hankins Matthew J.ORCID,Hall Xander,Lamberts AstridORCID,Lau Ryan M.,McKenna Dan,Moore Anna,Ofek Eran O.,Smith Roger M.ORCID,Soria RobertoORCID,Soon JamieORCID,Travouillon TonyORCID

Abstract

Abstract We present results from a systematic infrared (IR) census of R Coronae Borealis (RCB) stars in the Milky Way, using data from the Palomar Gattini IR (PGIR) survey. RCB stars are dusty, erratic variable stars presumably formed from the merger of a He-core and a CO-core white dwarf (WD). PGIR is a 30 cm J-band telescope with a 25 deg2 camera that surveys 18,000 deg2 of the northern sky (δ > −28°) at a cadence of 2 days. Using PGIR J-band lightcurves for ∼60 million stars together with mid-IR colors from WISE, we selected a sample of 530 candidate RCB stars. We obtained near-IR spectra for these candidates and identified 53 RCB stars in our sample. Accounting for our selection criteria, we find that there are a total of 350 100 + 150 RCB stars in the Milky Way. Assuming typical RCB lifetimes, this corresponds to an RCB formation rate of 0.8–5 × 10−3 yr−1, consistent with observational and theoretical estimates of the He-CO WD merger rate. We searched for quasi-periodic pulsations in the PGIR lightcurves of RCB stars and present pulsation periods for 16 RCB stars. We also examined high-cadenced TESS lightcurves for RCB and the chemically similar, but dustless hydrogen-deficient carbon (dLHdC) stars. We find that dLHdC stars show variations on timescales shorter than RCB stars, suggesting that they may have lower masses than RCB stars. Finally, we identified 3 new spectroscopically confirmed and 12 candidate Galactic DY Per type stars—believed to be colder cousins of RCB star—doubling the sample of Galactic DY Per type stars.

Funder

Mt. Cuba Astronomical Foundation

United States-Israel Binational Science Foundation

Heising-Simons Foundation

Australian Government Research Training Program

David and Lucile Packard Foundation

Gordon and Betty Moore Foundation

US National Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3