A physical picture for the acoustic resonant drag instability

Author:

Magnan Nathan1ORCID,Heinemann Tobias2,Latter Henrik N1

Affiliation:

1. DAMTP, University of Cambridge, CMS , Wilberforce Road, Cambridge CB3 0WA , UK

2. Niels Bohr International Academy, Niels Bohr Institute , Blegdamsvej 17, DK-2100 Copenhagen , Denmark

Abstract

ABSTRACT Mixtures of gas and dust are pervasive in the Universe, from active galactic nuclei (AGNs) and molecular clouds to protoplanetary discs. When the two species drift relative to each other, a large class of instabilities can arise, called ‘resonant drag instabilities’ (RDIs). The most famous RDI is the streaming instability, which plays an important role in planet formation. On the other hand, acoustic RDIs, the simplest kind, feature in the winds of cool stars, AGNs, or starburst regions. Unfortunately, owing to the complicated dynamics of two coupled fluids (gas and dust), the underlying physics of most RDIs is mysterious. In this paper, we develop a clear physical picture of how the acoustic RDI arises and support this explanation with transparent mathematics. We find that the acoustic RDI is built on two coupled mechanisms. In the first, the converging flows of a sound wave concentrate dust. In the second, a drifting dust clump excites sound waves. These processes feed into each other at resonance, thereby closing an unstable feedback loop. This physical picture helps decide where and when RDIs are most likely to happen, and what can suppress them. Additionally, we find that the acoustic RDI remains strong far from resonance. This second result suggests that one can simulate RDIs without having to fine-tune the dimensions of the numerical domain.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3