Particle Clustering in Turbulence: Prediction of Spatial and Statistical Properties with Deep Learning

Author:

Chan Yan-MongORCID,Manger NataschaORCID,Li YinORCID,Yang 楊 Chao-Chin 朝欽ORCID,Zhu 朱 Zhaohuan 照寰ORCID,Armitage Philip J.ORCID,Ho ShirleyORCID

Abstract

Abstract We investigate the utility of deep learning for modeling the clustering of particles that are aerodynamically coupled to turbulent fluids. Using a Lagrangian particle module within the Athena++ hydrodynamics code, we simulate the dynamics of particles in the Epstein drag regime within a periodic domain of isotropic forced hydrodynamic turbulence. This setup is an idealized model relevant to the collisional growth of micron- to millimeter-sized dust particles in early-stage planet formation. The simulation data are used to train a U-Net deep-learning model to predict gridded three-dimensional representations of the particle density and velocity fields, given as input the corresponding fluid fields. The trained model qualitatively captures the filamentary structure of clustered particles in a highly nonlinear regime. We assess model fidelity by calculating metrics of the density field (the radial distribution function) and of the velocity field (the relative velocity and the relative radial velocity between particles). Although trained only on the spatial fields, the model predicts these statistical quantities with errors that are typically <10%. Our results suggest that, given appropriately expanded training data, deep learning could complement direct numerical simulations in predicting particle clustering within turbulent flows.

Funder

NASA ∣ Science Mission Directorate

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3