Some aspects of rotation and magnetic-field morphology in the infrared dark cloud G34.43+00.24

Author:

Vahdanian Hamed1,Nejad-Asghar Mohsen1

Affiliation:

1. Department of Theoretical Physics, Faculty of Science, University of Mazandaran, Babolsar 4741613534, Iran

Abstract

ABSTRACT The infrared dark clouds (IRDCs) are molecular clouds with relatively greater values in their magnetic-field strengths. For example, the IRDC G34.43+00.24 (G34) has magnetic-field strength of the order of a few hundred micro-Gauss. In this study, we investigate if the dynamic motions of charged particles in an IRDC such as G34 can produce this magnetic-field strength inside it. The observations show that the line-of-sight velocity of G34 has global gradient. We assume that the measured global velocity gradient can correspond to the cloud rotation. We attribute a large-scale current density to this rotating cloud by considering a constant value for the incompleteness of charge neutrality and the velocity differences between the positive and negative particles with very low ionization fractions. We use the numerical package fishpack to obtain the magnetic-field strength and its morphology on the plane-of-sky within G34. The results show that the magnetic-field strengths are of the order of several hundred micro-Gauss, and its morphology in the plane-of-sky is somewhat consistent with the observational results. We also obtain the relationship between magnetic-field strength and density in G34. The results show that with increasing density, the magnetic-field strength increases approximately as a power-law function. The amount of power is approximately equal to 0.45, which is suitable for molecular clouds with strong magnetic fields. Therefore, we can conclude that the dynamical motion of IRDCs, and especially their rotations, can amplify the magnetic-field strengths within them.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3