Role of the magnetic field in the fragmentation process: the case of G14.225-0.506

Author:

Añez-López N.ORCID,Busquet G.ORCID,Koch P. M.ORCID,Girart J. M.ORCID,Liu H. B.ORCID,Santos F.,Chapman N. L.,Novak G.,Palau A.,Ho P. T. P.,Zhang Q.ORCID

Abstract

Context. Magnetic fields are predicted to play a significant role in the formation of filamentary structures and their fragmentation to form stars and star clusters. Aims. We aim to investigate the role of the magnetic field in the process of core fragmentation toward the two hub–filament systems in the infrared dark cloud G14.225-0.506, which present different levels of fragmentation. Methods. We performed observations of the thermal dust polarization at 350 μm using the Caltech Submillimeter Observatory (CSO) with an angular resolution of 10″ toward the two hubs (Hub-N and Hub-S) in the infrared dark cloud G14.225-0.506. We additionally applied the polarization–intensity-gradient method to estimate the significance of the magnetic field over the gravitational force. Results. The sky-projected magnetic field in Hub-N shows a rather uniform structure along the east–west orientation, which is roughly perpendicular to the major axis of the hub–filament system. The intensity gradient in Hub-N displays a single local minimum coinciding with the dust core MM1a detected with interferometric observations. Such a prevailing magnetic field orientation is slightly perturbed when approaching the dust core. Unlike the northern Hub, Hub-S shows two local minima, reflecting the bimodal distribution of the magnetic field. In Hub-N, both east and west of the hub–filament system, the intensity gradient and the magnetic field are parallel whereas they tend to be perpendicular when penetrating the dense filaments and hub. Analysis of the |δ|- and ΣB-maps indicates that, in general, the magnetic field cannot prevent gravitational collapse, both east and west, suggesting that the magnetic field is initially dragged by the infalling motion and aligned with it, or is channeling material toward the central ridge from both sides. Values of ΣB ≳ 1 are found toward a north–south ridge encompassing the dust emission peak, indicating that in this region magnetic field dominates over gravity force, or that with the current angular resolution we cannot resolve a hypothetically more complex structure. We estimated the magnetic field strength, the mass-to-flux ratio, and the Alfvén Mach number, and found differences between the two hubs. Conclusions. The different levels of fragmentation observed in these two hubs could arise from differences in the properties of the magnetic field rather than from differences in the intensity of the gravitational field because the density in the two hubs is similar. However, environmental effects could also play a role.

Funder

Ministery of Science and Innovation of Spain

Ministery of Science and Innovation of Spain

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference90 articles.

1. Interstellar Dust Grain Alignment

2. André P., Di Francesco J., Ward-Thompson D., et al. 2014, in Protostars and Planets VI, eds. Beuther H., Klessen R. S., Dullemond C. P., & Henning T. (Tucson, AZ: University of Arizona Press), 27

3. MAGNETIC FIELDS AND INFALL MOTIONS IN NGC 1333 IRAS 4

4. ALMA resolves the hourglass magnetic field in G31.41+0.31

5. UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225–0.506

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3