PS1-STRM: neural network source classification and photometric redshift catalogue for PS1 3π DR1

Author:

Beck Róbert12,Szapudi István12,Flewelling Heather1,Holmberg Conrad13,Magnier Eugene1,Chambers Kenneth C1

Affiliation:

1. Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

2. Department of Physics of Complex Systems, Eötvös Loránd University, Pf. 32, H-1518 Budapest, Hungary

3. Platform Services, Stanford Health Care, 300 Pasteur Drive, Stanford, CA 94305, USA

Abstract

ABSTRACT The Pan-STARRS1 (PS1) 3π survey is a comprehensive optical imaging survey of three quarters of the sky in the grizy broad-band photometric filters. We present the methodology used in assembling the source classification and photometric redshift (photo-z) catalogue for PS1 3π Data Release 1, titled Pan-STARRS1 Source Types and Redshifts with Machine learning (PS1-STRM). For both main data products, we use neural network architectures, trained on a compilation of public spectroscopic measurements that has been cross-matched with PS1 sources. We quantify the parameter space coverage of our training data set, and flag extrapolation using self-organizing maps. We perform a Monte Carlo sampling of the photometry to estimate photo-z uncertainty. The final catalogue contains 2902 054 648 objects. On our validation data set, for non-extrapolated sources, we achieve an overall classification accuracy of $98.1{{\ \rm per\ cent}}$ for galaxies, $97.8{{\ \rm per\ cent}}$ for stars, and $96.6{{\ \rm per\ cent}}$ for quasars. Regarding the galaxy photo-z estimation, we attain an overall bias of 〈Δznorm〉 = 0.0005, a standard deviation of σ(Δznorm) = 0.0322, a median absolute deviation of MAD(Δznorm) = 0.0161, and an outlier fraction of $P\left(|\Delta z_{\mathrm{norm}}|\gt 0.15\right)=1.89{{\ \rm per\ cent}}$. The catalogue will be made available as a high-level science product via the Mikulski Archive for Space Telescopes.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3