Giant radio galaxies in the LOFAR deep fields

Author:

Simonte M.ORCID,Andernach H.ORCID,Brüggen M.,Miley G. K.ORCID,Barthel P.ORCID

Abstract

Context. The reason why some radio galaxies (RGs) grow to form so-called giant radio galaxies (GRGs) with sizes > 700 kpc, is still unknown. Aims. In this study, we compare the radio, optical and environmental properties of GRGs with those of a control sample of smaller RGs we found in the three LOw-Frequency ARray (LOFAR) deep fields, namely the Boötes, ELAIS-N1, Lockman Hole, for a total area of ≈95 deg2. Methods. We inspected the LOFAR deep fields and created a catalogue of 1609 extended radio galaxies (ERGs). By visual inspection, we identified their host galaxies and spectroscopically or photometrically classified 280 of these as GRGs. We studied their properties, such as their accretion state, stellar mass and star formation rate (SFR) using deep optical and infrared survey data. Moreover, we explored the environment in terms of the surface number density of neighbouring galaxies within these surveys. Integrated flux densities and radio luminosities were also determined for a subset of ERGs through available survey images at 50, 150, 610, and 1400 MHz to compute integrated spectral indices. Results. Considering the fraction of GRGs displaying an FRII morphology alongside the host galaxy properties, we suggest that GRGs consistently possess sufficient power to overcome jet frustration caused by the interstellar medium. Moreover, clear differences emerge in the environmental densities between GRGs and smaller RGs, using the number of neighbouring galaxies within 10 Mpc from the host galaxy as a proxy. GRGs preferentially reside in sparser environments compared to their smaller counterparts. In particular, only 3.6% of the GRGs reside within a 3D comoving distance of 5 Mpc from a previously reported galaxy cluster. We found that larger sources exhibit steeper integrated spectral indices, suggesting that GRGs are late-stage versions of RGs. These results suggest that GRGs are amongst the oldest radio sources with the most stable nuclear activity that reside in sparse environments.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3