Numerical simulations of the random angular momentum in convection – II. Delayed explosions of red supergiants following ‘failed’ supernovae

Author:

Antoni Andrea1ORCID,Quataert Eliot12ORCID

Affiliation:

1. Astronomy Department and Theoretical Astrophysics Center, University of California , Berkeley, CA 94720 , USA

2. Department of Astrophysical Sciences, Princeton University , Princeton, NJ 08544 , USA

Abstract

ABSTRACT When collapse of the iron core in a massive red or yellow supergiant does not lead to an energetic supernova, a significant fraction of the convective hydrogen envelope will fall in towards the black hole formed from the collapsing core. The random velocity field in the convective envelope results in finite specific angular momentum in each infalling shell. Using 3D hydrodynamical simulations, we follow the infall of this material to small radii, resolving the circularization radii of the flow. We show that infall of the convective envelope leads to nearly complete envelope ejection in a ≳1048 erg explosion with outflow speeds of ≳200 km s−1. The light curve of such an explosion would show a characteristic, red plateau as the ejecta cools and a hydrogen recombination front recedes through the expanding ejecta. Adopting supernova IIp scalings, the event would have a plateau luminosity of ≳1040 erg s−1 and a duration of several hundreds of days. These events would appear quite similar to luminous red novae with red or yellow supergiant progenitors; some luminous red novae may, in fact, be signposts of black hole formation. The mechanism studied here produces more energetic explosions than the weak shock generated from radiation of neutrino energy during the protoneutron star phase. Because we cannot simulate all the way to the horizon, our results are likely lower limits on the energy and luminosity of transients produced during the collapse of a red or yellow supergiant to form a black hole.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3