Construction of a far-ultraviolet all-sky map from an incomplete survey: application of a deep learning algorithm

Author:

Jo Young-Soo1,Choi Yeon-Ju2,Kim Min-Gi3,Woo Chang-Ho3,Min Kyoung-Wook3,Seon Kwang-Il14

Affiliation:

1. Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea

2. Korea Aerospace Research Institute, 169-84, Gwahak-ro,Yuseong-Gu, Daejeon 34133, Republic of Korea

3. Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

4. Astronomy and Space Science Major, University of Science and Technology (UST), Korea, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

Abstract

ABSTRACT We constructed a far-ultraviolet (FUV) all-sky map based on observations from the Far Ultraviolet Imaging Spectrograph (FIMS) aboard the Korean microsatellite Science and Technology SATellite-1. For the ${\sim}20{{\ \rm per\ cent}}$ of the sky not covered by FIMS observations, predictions from a deep artificial neural network were used. Seven data sets were chosen for input parameters, including five all-sky maps of H α, E(B − V), N(H i), and two X-ray bands, with Galactic longitudes and latitudes. 70 ${{\ \rm per\ cent}}$ of the pixels of the observed FIMS data set were randomly selected for training as target parameters and the remaining 30 ${{\ \rm per\ cent}}$ were used for validation. A simple four-layer neural network architecture, which consisted of three convolution layers and a dense layer at the end, was adopted, with an individual activation function for each convolution layer; each convolution layer was followed by a dropout layer. The predicted FUV intensities exhibited good agreement with Galaxy Evolution Explorer observations made in a similar FUV wavelength band for high Galactic latitudes. As a sample application of the constructed map, a dust scattering simulation was conducted with model optical parameters and a Galactic dust model for a region that included observed and predicted pixels. Overall, FUV intensities in the observed and predicted regions were reproduced well.

Funder

Korea Astronomy and Space Science Institute

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3