A DNN-Based UVI Calculation Method Using Representative Color Information of Sun Object Images

Author:

Ga Deog-Hyeon,Oh Seung-TaekORCID,Lim Jae-Hyun

Abstract

As outdoor activities are necessary for maintaining our health, research interest in environmental conditions such as the weather, atmosphere, and ultraviolet (UV) radiation is increasing. In particular, UV radiation, which can benefit or harm the human body depending on the degree of exposure, is recognized as an essential environmental factor that needs to be identified. However, unlike the weather and atmospheric conditions, which can be identified to some extent by the naked eye, UV radiation corresponds to wavelength bands that humans cannot recognize; hence, the intensity of UV radiation cannot be measured. Recently, although devices and sensors that can measure UV radiation have been launched, it is very difficult for ordinary users to acquire ambient UV radiation information directly because of the cost and inconvenience caused by operating separate devices. Herein, a deep neural network (DNN)-based ultraviolet index (UVI) calculation method is proposed using representative color information of sun object images. First, Mask-region-based convolutional neural networks (R-CNN) are applied to sky images to extract sun object regions and then detect the representative color of the sun object regions. Then, a deep learning model is constructed to calculate the UVI by inputting RGB color values, which are representative colors detected later along with the altitude angle and azimuth of the sun at that time. After selecting each day of spring and autumn, the performance of the proposed method was tested, and it was confirmed that accurate UVI could be calculated within a range of mean absolute error of 0.3.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3