Affiliation:
1. Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hda. San José de la Huerta, Morelia, Michoacán, C.P. 58089, México
2. School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
Abstract
ABSTRACT
We explore how dense filament widths, when measured using different molecular species, may change as a consequence of gas accretion towards the filament. As a gas parcel falls into the filament, it will experience different density, temperature, and extinction values. The rate at which this environment changes will affect differently the abundance of different molecules. So, a molecule that forms quickly will better reflect the local physical conditions a gas parcel experiences than a slower forming molecule. Since these differences depend on how the respective time-scales compare, the different molecular distributions should reflect how rapidly the environment changes, i.e. the accretion rate towards the filament. We find that the filament widths measured from time-dependent abundances for C2H, CO, CN, CS, and C3H2 are the most sensitive to this effect. This is because these molecules are the ones presenting also the wider filament widths. On the contrary, molecules such as N2H+, NH3, H2CO, HNC, and CH3OH are not so sensitive to accretion and present the narrowest filament widths. We propose that ratios of filament widths for different tracers could be a useful tool to estimate the accretion rate on to the filament.
Funder
UNAM
CONACYT
Sistema Nacional de Investigadores
University of Leeds
Science and Technology Facilities Council
UK Research and Innovation
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献