Non-ideal magnetohydrodynamics of self-gravitating filaments

Author:

Gutiérrez-Vera Nicol,Grassi Tommaso,Bovino Stefano,Lupi Alessandro,Galli Daniele,Schleicher Dominik R. G.

Abstract

Context. Filaments have been studied in detail through observations and simulations. A range of numerical works have separately investigated how chemistry and diffusion effects, as well as magnetic fields and their structure impact the gas dynamics of the filament. However, non-ideal effects have hardly been explored thus far. Aims. We investigate how non-ideal magnetohydrodynamic (MHD) effects, combined with a simplified chemical model affect the evolution and accretion of a star-forming filament. Methods. We modeled an accreting self-gravitating turbulent filament using LEMONGRAB, a one-dimensional (1D) non-ideal MHD code that includes chemistry. We explore the influence of non-ideal MHD, the orientation and strength of the magnetic field, and the cosmic ray ionization rate, on the evolution of the filament, with particular focus on the width and accretion rate. Results. We find that the filament width and the accretion rate are determined by the magnetic field properties, including the initial strength, the coupling with the gas controlled by the cosmic ray ionization rate, and the orientation of the magnetic field with respect to the accretion flow direction. Increasing the cosmic-ray ionization rate leads to a behavior closer to that of ideal MHD, reducing the magnetic pressure support and, hence, damping the accretion efficiency with a consequent broadening of the filament width. For the same reason, we obtained a narrower width and a larger accretion rate when we reduced the initial magnetic field strength. Overall, while these factors affect the final results by approximately a factor of 2, removing the non-ideal MHD effects results in a much greater variation (up to a factor of 7). Conclusions. The inclusion of non-ideal MHD effects and the cosmic-ray ionization is crucial for the study of self-gravitating filaments and in determining critical observable quantities, such as the filament width and accretion rate.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetic field dragging in filamentary molecular clouds;Astronomy & Astrophysics;2024-06-25

2. The role of magnetic fields in the formation of multiple massive stars;Astronomy & Astrophysics;2023-05

3. Line emission from filaments in molecular clouds;Monthly Notices of the Royal Astronomical Society;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3