Joint analysis of 6dFGS and SDSS peculiar velocities for the growth rate of cosmic structure and tests of gravity

Author:

Said Khaled12ORCID,Colless Matthew1ORCID,Magoulas Christina3,Lucey John R4ORCID,Hudson Michael J567

Affiliation:

1. Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

2. School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia

3. Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia

4. Centre for Extragalactic Astronomy, Durham University, Durham DH1 3LE, UK

5. Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada

6. Waterloo Centre for Astrophysics, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada

7. Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada

Abstract

ABSTRACT Measurement of peculiar velocities by combining redshifts and distance indicators is a powerful way to measure the growth rate of a cosmic structure and test theories of gravity at low redshift. Here we constrain the growth rate of the structure by comparing observed Fundamental Plane peculiar velocities for 15 894 galaxies from the 6dF Galaxy Survey (6dFGS) and Sloan Digital Sky Survey (SDSS) with predicted velocities and densities from the 2M++ redshift survey. We measure the velocity scale parameter $\beta \equiv {\Omega _{\rm m}^\gamma }/b = 0.372^{+0.034}_{-0.050}$ and $0.314^{+0.031}_{-0.047}$ for 6dFGS and SDSS, respectively, where Ωm is the mass density parameter, γ is the growth index, and b is the bias parameter normalized to the characteristic luminosity of galaxies, L*. Combining 6dFGS and SDSS, we obtain β = 0.341 ± 0.024, implying that the amplitude of the product of the growth rate and the mass fluctuation amplitude is fσ8 = 0.338 ± 0.027 at an effective redshift z = 0.035. Adopting Ωm = 0.315 ± 0.007, as favoured by Planck and using γ = 6/11 for General Relativity and γ = 11/16 for DGP gravity, we get $S_8(z=0) = \sigma _8 \sqrt{\Omega _{\rm m}/0.3} =0.637 \pm 0.054$ and 0.741 ± 0.062 for GR and DGP, respectively. This measurement agrees with other low-redshift probes of large-scale structure but deviates by more than 3σ from the latest Planck CMB measurement. Our results favour values of the growth index γ > 6/11 or a Hubble constant H0 > 70 km s−1 Mpc−1 or a fluctuation amplitude σ8 < 0.8 or some combination of these. Imminent redshift surveys such as Taipan, DESI, WALLABY, and SKA1-MID will help to resolve this tension by measuring the growth rate of cosmic structure to 1 per cent in the redshift range 0 < z < 1.

Funder

Gruber Foundation

Australian Research Council

Science and Technology Facilities Council

Alfred P. Sloan Foundation

National Aeronautics and Space Administration

National Science Foundation

U.S. Department of Energy

Max Planck Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3