The propagation of choked jet outflows in power-law external media

Author:

Irwin Christopher M1,Nakar Ehud1ORCID,Piran Tsvi2

Affiliation:

1. The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

2. The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Abstract

ABSTRACT Observations of both gamma-ray bursts (GRBs) and active galactic nuclei (AGNs) point to the idea that some relativistic jets are suffocated by their environment before we observe them. In these ‘choked’ jets, all the jet’s kinetic energy is transferred into a hot and narrow cocoon of near-uniform pressure. We consider the evolution of an elongated, axisymmetric cocoon formed by a choked jet as it expands into a cold power-law ambient medium ρ ∝ R−α, in the case where the shock is decelerating (α < 3). The evolution proceeds in three stages, with two breaks in behaviour: the first occurs once the outflow has doubled its initial width, and the second once it has doubled its initial height. Using the Kompaneets approximation, we derive analytical formulae for the shape of the cocoon shock, and obtain approximate expressions for the height and width of the outflow versus time in each of the three dynamical regimes. The asymptotic behaviour is different for shallow ($\alpha \leq 2$) and steep (2 < α < 3) density profiles. Comparing the analytical model to numerical simulations, we find agreement to within ∼15 per cent out to 45 deg from the axis, but discrepancies of a factor of 2–3 near the equator. The shape of the cocoon shock can be measured directly in AGNs, and is also expected to affect the early light from failed GRB jets. Observational constraints on the shock geometry provide a useful diagnostic of the jet properties, even long after jet activity ceases.

Funder

Israel Science Foundation

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The velocity distribution of outflows driven by choked jets in stellar envelopes;Monthly Notices of the Royal Astronomical Society;2022-12-12

2. Three-dimensional numerical simulations of structured gamma-ray burst jets;Monthly Notices of the Royal Astronomical Society;2022-11-23

3. Observational signatures of stellar explosions driven by relativistic jets;Monthly Notices of the Royal Astronomical Society;2022-08-04

4. Fermi bubbles: the collimated outburst needed to explain forward-shock edges;Monthly Notices of the Royal Astronomical Society;2022-04-22

5. Bolometric light curves of aspherical shock breakout;Monthly Notices of the Royal Astronomical Society;2021-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3