Particle acceleration in winds of star clusters

Author:

Morlino G1ORCID,Blasi P23ORCID,Peretti E24ORCID,Cristofari P23

Affiliation:

1. INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I -50125 Firenze, Italy

2. Gran Sasso Science Institute (INFN), Viale F. Crispi 7, I-67100 L’ Aquila, Italy

3. INFN – Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, I-67100 Assergi, AQ, Italy

4. Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

Abstract

ABSTRACT The origin of cosmic rays in our Galaxy remains a subject of active debate. While supernova remnant (SNR) shocks are often invoked as the sites of acceleration, it is now widely accepted that the difficulties of such sources in reaching PeV energies are daunting and it seems likely that only a subclass of rare remnants can satisfy the necessary conditions. Moreover, the spectra of cosmic rays escaping the remnants have a complex shape that is not obviously the same as the spectra observed at the Earth. Here, we investigate the process of particle acceleration at the termination shock that develops in the bubble excavated by star clusters’ winds in the interstellar medium. While the main limitation to the maximum energy in SNRs comes from the need for effective wave excitation upstream so as to confine particles in the near-shock region and speed up the acceleration process, at the termination shock of star clusters the confinement of particles upstream is guaranteed by the geometry of the problem. We develop a theory of diffusive shock acceleration at such shock and we find that the maximum energy may reach the PeV region for powerful clusters in the high end of the luminosity tail for these sources. A crucial role in this problem is played by the dissipation of energy in the wind to magnetic perturbations. Under reasonable conditions, the spectrum of the accelerated particles has a power-law shape with a slope 4/4.3, in agreement with what is required based upon standard models of cosmic ray transport in the Galaxy.

Funder

ASI

INAF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3