Basilisk: Bayesian hierarchical inference of the galaxy–halo connection using satellite kinematics – I. Method and validation

Author:

van den Bosch Frank C1ORCID,Lange Johannes U1ORCID,Zentner Andrew R2ORCID

Affiliation:

1. Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101, USA

2. Department of Physics and Astronomy & Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract

ABSTRACT We present a Bayesian hierarchical inference formalism (Basilisk) to constrain the galaxy–halo connection using satellite kinematics. Unlike traditional methods, Basilisk does not resort to stacking the kinematics of satellite galaxies in bins of central luminosity, and does not make use of summary statistics, such as satellite velocity dispersion. Rather, Basilisk leaves the data in its raw form and computes the corresponding likelihood. In addition, Basilisk can be applied to flux-limited, rather than volume-limited samples, greatly enhancing the quantity and dynamic range of the data. And finally, Basilisk is the only available method that simultaneously solves for halo mass and orbital anisotropy of the satellite galaxies, while properly accounting for scatter in the galaxy–halo connection. Basilisk uses the conditional luminosity function to model halo occupation statistics, and assumes that satellite galaxies are a relaxed tracer population of the host halo’s potential with kinematics that obey the spherical Jeans equation. We test and validate Basilisk using mocks of varying complexity, and demonstrate that it yields unbiased constraints on the galaxy–halo connection and at a precision that rivals galaxy–galaxy lensing. In particular, Basilisk accurately recovers the full PDF of the relation between halo mass and central galaxy luminosity, and simultaneously constrains the orbital anisotropy of the satellite galaxies. Basilisk ’s inference is not affected by potential velocity bias of the central galaxies, or by slight errors in the inferred, radial profile of satellite galaxies that arise as a consequence of interlopers and sample impurity.

Funder

National Science Foundation

University of Pittsburgh

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3