BASILISK II. Improved constraints on the galaxy–halo connection from satellite kinematics in SDSS

Author:

Mitra Kaustav1ORCID,van den Bosch Frank C1ORCID,Lange Johannes U234ORCID

Affiliation:

1. Department of Astronomy, Yale University , PO Box 208101, New Haven, CT 06520-8101 , USA

2. Department of Physics, American University , 4400 Massachusetts Avenue NW, Washington, DC 20016 , USA

3. Department of Physics, University of Michigan , Ann Arbor, MI 48109 , USA

4. Leinweber Center for Theoretical Physics, University of Michigan , Ann Arbor, MI 48109 , USA

Abstract

ABSTRACT Basilisk is a novel Bayesian hierarchical method for inferring the galaxy–halo connection, including its scatter, using the kinematics of satellite galaxies extracted from a redshift survey. In this paper, we introduce crucial improvements, such as updated central and satellite selection, advanced modelling of impurities and interlopers, extending the kinematic modelling to fourth order by including the kurtosis of the line-of-sight velocity distribution, and utilizing satellite abundance as additional constraint. This drastically enhances Basilisk’s performance, resulting in an unbiased recovery of the full conditional luminosity function (central and satellite) and with unprecedented precision. After validating Basilisk’s performance using realistic mock data, we apply it to the SDSS-DR7 data. The resulting inferences on the galaxy–halo connection are consistent with, but significantly tighter than, previous constraints from galaxy group catalogues, galaxy clustering, and galaxy–galaxy lensing. Using full projected phase-space information, Basilisk breaks the mass-anisotropy degeneracy, thus providing precise global constraint on the average orbital velocity anisotropy of satellite galaxies across a wide range of halo masses. Satellite orbits are found to be mildly radially anisotropic, in good agreement with the mean anisotropy for subhaloes in dark matter-only simulations. Thus, we establish Basilisk as a powerful tool that is not only more constraining than other methods on similar volumes of data, but crucially, is also insensitive to halo assembly bias which plagues the commonly used techniques like galaxy clustering and galaxy–galaxy lensing.

Funder

National Aeronautics and Space Administration

National Science Foundation

Klaus Tschira Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3