Global hierarchical collapse in molecular clouds. Towards a comprehensive scenario

Author:

Vázquez-Semadeni Enrique1,Palau Aina1ORCID,Ballesteros-Paredes Javier1ORCID,Gómez Gilberto C1ORCID,Zamora-Avilés Manuel12ORCID

Affiliation:

1. Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán 58089, México

2. CONACYT-Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, 72840 Tonantzintla, Puebla, México

Abstract

AbstractWe present a unified description of the scenario of global hierarchical collapse (GHC). GHC constitutes a flow regime of (non-homologous) collapses within collapses, in which all scales accrete from their parent structures, and small, dense regions begin to contract at later times, but on shorter time-scales than large, diffuse ones. The different time-scales allow for most of the clouds’ mass to be dispersed by the feedback from the first massive stars, maintaining the cloud-scale star formation rate low. Molecular clouds (MCs), clumps, and cores are not in equilibrium, but rather are either undergoing contraction or dispersal. The main features of GHC are as follows: (1) The gravitational contraction is initially very slow, and begins when the cloud still consists of mostly atomic gas. (2) Star-forming MCs are in an essentially pressureless regime, causing filamentary accretion flows from the cloud to the core scale to arise spontaneously. (3) Accreting objects have longer lifetimes than their own free-fall time, due to the continuous replenishment of material. (4) The clouds’ total mass and its molecular and dense mass fractions increase over time. (5) The clouds’ masses stop growing when feedback becomes important. (6) The first stars appear several megayears after global contraction began, and are of low mass; massive stars appear a few megayears later, in massive hubs. (7) The minimum fragment mass may well extend into the brown-dwarf regime. (8) Bondi–Hoyle–Lyttleton-like accretion occurs at both the protostellar and the core scales, accounting for an IMF with slope dN/dM ∝ M−2. (9) The extreme anisotropy of the filamentary network explains the difficulty in detecting large-scale infall signatures. (10) The balance between inertial and gravitationally driven motions in clumps evolves during the contraction, explaining the approach to apparent virial equilibrium, from supervirial states in low-column density clumps and from subvirial states in dense cores. (11) Prestellar cores adopt Bonnor–Ebert-like profiles, but are contracting ever since when they may appear to be unbound. (12) Stellar clusters develop radial age and mass segregation gradients. We also discuss the incompatibility between supersonic turbulence and the observed scalings in the molecular hierarchy. Since gravitationally formed filaments do not develop shocks at their axes, we suggest that a diagnostic for the GHC scenario should be the absence of strong shocks in them. Finally, we critically discuss some recent objections to the GHC mechanism.

Funder

CONACYT

UNAM-PAPIIT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 197 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3