Extended CO(1–0) survey and ammonia measurements towards two bubble regions in W5

Author:

Shen HailiangORCID,Esimbek JarkenORCID,Henkel ChristianORCID,Xu Ye,Zhou Jianjun,Li Dalei,He Yuxin,Tang XindiORCID,Wu GangORCID,Komesh ToktarkhanORCID,Tursun Kadirya,Zhou DongdongORCID,Imanaly Ernar,Berdikhan DildaORCID

Abstract

The feedback effect of massive stars can either accelerate or inhibit star formation activity within molecular clouds. Studying the morphology of molecular clouds near W5 offers an excellent opportunity to examine this feedback effect. We conducted a comprehensive survey of the W5 complex using the Purple Mountain Observatory 13.7 m millimeter telescope. This survey includes 12CO, 13CO, and C18O (J = 1 − 0), with a sky coverage of 6.6 deg2 (136.0° < l < 138.75°, 0° < b < 2.4°). Furthermore, we performed simultaneous observations of the NH3 (1,1) and NH3 (2,2) lines in the four densest star-forming regions of W5, using the 26 m radio telescope of the Xinjiang Astronomy Observatory (XAO). Our analysis of the morphological distribution of the molecular clouds, distribution of high-mass young stellar objects (HMYSOs), 13CO/C18O abundance ratio, and the stacked average spectral line distribution at different 8 μm thresholds provide compelling evidence of triggering. Within the mapped region, we identified a total of 212 molecular clumps in the 13CO cube data using the astrodendro algorithm. Remarkably, approximately 26.4% (56) of these clumps demonstrate the potential to form massive stars and 42.9% (91) of them are gravitationally bound. Within clumps that are capable of forming high-mass stars, there is a distribution of class I YSOs, all located in dense regions near the boundaries of the HII regions. The detection of NH3 near the most prominent cores reveals moderate kinetic temperatures and densities (as CO). Comparing the Tkin and Tex values reveals a reversal in trends for AFGL 4029 (higher Tex and lower Tkin) and W5-W1, indicating the inadequacy of optically thick CO for dense region parameter calculations. Moreover, a comparison of the intensity distributions between NH3 (1,1) and C18O (1–0) in the four densest region reveals a notable depletion effect in AFGL 4029, characterised by a low Tkin (9 K) value and a relatively high NH3 column density, 2.5 × 1014 cm−2. By classifying the 13CO clumps as: “feedback,” “non-feedback,” “outflow,” or “non-outflow” clumps, we observe that the parameters of the “feedback” and “outflow” clumps exhibit variations based on the intensity of the internal 8 μm flux and the outflow energy, respectively. These changes demonstrate a clear linear correlation, which distinctly separate them from the parameter distributions of the “non-feedback” and “non-outflow” clumps, thus providing robust evidence to support a triggering scenario.

Funder

the National Key R&D Program of China

the Regional Collaborative Innovation Project of Xinjiang Uyghur Autonomous Region

the National Natural Science Foundation of China

the Tianshan Talent Program of Xinjiang Uygur Autonomous Region

the Natural Science Foundation of Xinjiang Uygur Autonomous Region

the Chinese Academy of Sciences (CAS) “Light of West China” Program

National Key R\&D Program of China

the Xinjiang Key Laboratory of Radio Astrophysics

D.L. acknowledges support from Youth Innovation Promotion Association CAS

the Chinese Academy of Sciences President’s International Fellowship Initiative

the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

the National Key R\&D Program of China

the CAS Key Research Program of Frontier Sciences

Tianchi Talents Program of Xinjiang Uygur Autonomous Region

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3