Classification of blazar candidates of uncertain type from the Fermi LAT 8-yr source catalogue with an artificial neural network

Author:

Kovačević M1,Chiaro G2,Cutini S1,Tosti G3

Affiliation:

1. INFN – Istituto Nazionale di Fisica Nucleare Sez. Perugia, I-06123 Perugia, Italy

2. INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano, Italy

3. Dipartimento di Fisica e Geologia, Univ. degli Studi di Perugia, I-06123 Perugia, Italy

Abstract

ABSTRACT The Fermi Large Area Telescope (LAT) has detected more than 5000 γ-ray sources in its first 8 yr of operation. More than 3000 of them are blazars. About 60 per cent of the Fermi-LAT blazars are classified as BL Lacertae objects (BL Lacs) or Flat Spectrum Radio Quasars (FSRQs), while the rest remain of uncertain type. The goal of this study was to classify those blazars of uncertain type, using a supervised machine learning method based on an artificial neural network, by comparing their properties to those of known γ-ray sources. Probabilities for each of 1329 uncertain blazars to be a BL Lac or FSRQ are obtained. Using 90 per cent precision metric, 801 can be classified as BL Lacs and 406 as FSRQs while 122 still remain unclassified. This approach is of interest because it gives a fast preliminary classification of uncertain blazars. We also explored how different selections of training and testing samples affect the classification and discuss the meaning of network outputs.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gamma-ray blazar classification using machine learning with advanced weight initialization and self-supervised learning techniques;Monthly Notices of the Royal Astronomical Society;2024-01-05

2. An analytical theory for the resolution attainable using eclipse mapping of exoplanets;Monthly Notices of the Royal Astronomical Society;2023-12-29

3. Classification of Fermi BCUs Using Machine Learning;The Astrophysical Journal;2023-10-01

4. Fermi LAT AGN classification using supervised machine learning;Monthly Notices of the Royal Astronomical Society;2023-08-18

5. Hunting for the candidates of misclassified sources in LSP BL Lacs using machine learning;Monthly Notices of the Royal Astronomical Society;2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3