Hunting for the candidates of misclassified sources in LSP BL Lacs using machine learning

Author:

Kang Shi-Ju1ORCID,Zheng Yong-Gang2ORCID,Wu Qingwen3ORCID

Affiliation:

1. School of Physics and Electrical Engineering, Liupanshui Normal University , Liupanshui, Guizhou 553004 , China

2. Department of Physics, Yunnan Normal University , Kunming, Yunnan 650092 , China

3. Department of Astronomy, School of Physics, Huazhong University of Science and Technology , Wuhan, Hubei 430074 , China

Abstract

ABSTRACT An equivalent–width-based classification may cause the erroneous judgement to the flat spectrum radio quasars (FSRQs) and BL Lacerate objects (BL Lac) due to the diluting the line features by dramatic variations in the jet continuum flux. To help address the issue, this work explores the possible intrinsic classification on the basis of a random forest supervised machine learning algorithm. In order to do so, we compile a sample of 1680 Fermi blazars that have both gamma-rays and radio-frequencies data available from the 4LAC-DR2 catalogue, which includes 1352 training and validation samples and 328 forecast samples. By studying the results for all of the different combinations of 23 characteristic parameters, we found that there are 178 optimal parameter combinations (OPCs) with the highest accuracy (≃98.89 per cent). Using the combined classification results from the nine combinations of these OPCs to the 328 forecast samples, we predict that there are 113 true BL Lacs (TBLs) and 157 false BL Lacs (FBLs) that are possible intrinsically FSRQs misclassified as BL Lacs. The FBLs show a clear separation from TBLs and FSRQs in the gamma-ray photon spectral index, Γph, and X-band radio flux, logFR, plot. Phenomenally, existence a BL Lac to FSRQ (B-to-F) transition zone is suggested, where the FBLs are in the stage of transition from BL Lacs to FSRQs. Comparing the LSP changing-look blazars (CLBs) reported in the literatures, the majority of LSP CLBs are located at the B-to-F zone. We argue that the FBLs located at B-to-F transition zone are the most likely candidates of CLBs.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Fermi-LAT view of the changing-look blazar OQ 334;Astronomy & Astrophysics;2024-05

2. The Physical Properties of Changing-look Blazars;The Astrophysical Journal;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3