The SATIN project – I. Turbulent multiphase ISM in Milky Way simulations with SNe feedback from stellar clusters

Author:

Bieri Rebekka1ORCID,Naab Thorsten2,Geen Sam3ORCID,Coles Jonathan P4ORCID,Pakmor Rüdiger2ORCID,Walch Stefanie5

Affiliation:

1. Institute for Computational Science, University of Zurich , Wintherthurerstrasse 190, CH-8057 Zürich, Switzerland

2. Max-Planck-Institute for Astrophysics , Karl-Schwartzschild-Strasse 1, D-85748 Garching, Germany

3. Anton Pannekoek Institute for Astronomy, Universiteit van Amsterdam , Science Park 904, NL-1098 XH Amsterdam, the Netherlands

4. ETH Zurich / Swiss National Supercomputing Centre (CSCS) , Via Trevano 131, CH-6900 Lugano, Switzerland

5. Physikalisches Institut der Universität zu Köln , Zülpicher Strasse 77, D-50937 Köln, Germany

Abstract

ABSTRACT We introduce the star formation and supernova (SN) feedback model of the satin (Simulating AGNs Through ISM with Non-Equilibrium Effects) project to simulate the evolution of the star forming multiphase interstellar medium (ISM) of entire disc galaxies. This galaxy-wide implementation of a successful ISM feedback model tested in small box simulations naturally covers an order of magnitude in gas surface density, shear and radial motions. It is implemented in the adaptive mesh refinement code ramses at a peak resolution of 9 pc. New stars are represented by star cluster (sink) particles with individual SN delay times for massive stars. With SN feedback, cooling, and gravity, the galactic ISM develops a three-phase structure. The star formation rates naturally follow observed scaling relations for the local Milky Way gas surface density. SNe drive additional turbulence in the warm (300 < T < 104 K) gas and increase the kinetic energy of the cold gas, cooling out of the warm phase. The majority of the gas leaving the galactic ISM is warm and hot with mass loading factors of 3 ≤ η ≤ 10 up to h = 5 kpc away from the galaxy. While the hot gas is leaving the system, the warm and cold gas falls back onto the disc in a galactic fountain flow. The inclusion of other stellar feedback processes from massive stars seems to be needed to reduce the rate at which stars form at higher surface densities and to increase/decrease the amount of warm/cold gas.

Funder

Deutsche Forschungsgemeinschaft

NOVA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3