How runaway stars boost galactic outflows

Author:

Andersson Eric P1ORCID,Agertz Oscar1ORCID,Renaud Florent1ORCID

Affiliation:

1. Department of Astronomy and Theoretical Physics, Lund Observatory, Box 43, SE-221 00 Lund, Sweden

Abstract

ABSTRACT Roughly 10 per cent of OB stars are kicked out of their natal clusters before ending their life as supernovae. These so-called runaway stars can travel hundreds of parsecs into the low-density interstellar medium, where momentum and energy from stellar feedback is efficiently deposited. In this work, we explore how this mechanism affects large-scale properties of the galaxy, such as outflows. To do so we use a new model that treats OB stars and their associated feedback processes on a star-by-star basis. With this model, we compare two hydrodynamical simulations of Milky Way-like galaxies, one where we include runaways, and one where we ignore them. Including runaway stars leads to twice as many supernovae explosions in regions with gas densities ranging from $10^{-5}\, \mathrm{\,cm^{-3}}$ to $10^{-3}\, \mathrm{\,cm^{-3}}$. This results in more efficient heating of the inter-arm regions, and drives strong galactic winds with mass loading factors boosted by up to one order of magnitude. These outflows produce a more massive and extended multiphase circumgalactic medium, as well as a population of dense clouds in the halo. Conversely, since less energy and momentum is released in the dense star-forming regions, the cold phase of the interstellar medium is less disturbed by feedback effects.

Funder

Knut och Alice Wallenbergs Stiftelse

Swedish Research Council

Royal Physiographic Society in Lund

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3