Influence of magnetic cycles on stellar prominences and their mass loss rates

Author:

Faller Sarah J1ORCID,Jardine Moira M1ORCID

Affiliation:

1. School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, KY16 YSS

Abstract

Abstract Observations of rapidly-rotating cool stars often show coronal “slingshot” prominences that remove mass and angular momentum when they are ejected. The derived masses of these prominences show a scatter of some two orders of magnitude. In order to investigate if this scatter could be intrinsic, we use a full magnetic cycle of solar magnetograms to model the coronal structure and prominence distribution in a young Sun, where we scale the field strength in the magnetograms with angular velocity according to B∝Ω−1.32. We reproduce both the observed prominence masses and their scatter. We show that both the field strength and the field geometry contribute to the prominence masses that can be supported and to the rate at which they are ejected. Predicted prominence masses follow the magnetic cycle, but with half the period, peaking both at cycle maximum and at cycle minimum. We show that mass loss rates in prominences are less than those predicted for the stellar wind. We also investigate the role of small-scale field that may be unresolved in typical stellar magnetograms. This provides only a small reduction in the predicted total prominence mass, principally by reducing the number of large magnetic loops that can support slingshot prominences. We conclude that the observed scatter in prominence masses can be explained by underlying magnetic cycles.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3