Triggered Population III star formation: the effect of H2 self-shielding

Author:

Chiaki Gen123ORCID,Wise John H1

Affiliation:

1. Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology , Atlanta, GA 30332, USA

2. Astronomical Institute, Graduate School of Science, Tohoku University , Aoba, Sendai 980-8578, Japan

3. National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

Abstract

ABSTRACTThe multiplicity of metal-free (Population III) stars may influence their feedback efficiency within their host dark matter haloes, affecting subsequent metal enrichment and the transition to galaxy formation. Radiative feedback from massive stars can trigger nearby star formation in dense self-shielded clouds. In model radiation self-shielding, the H2 column density must be accurately computed. In this study, we compare two local approximations based on the density gradient and Jeans length with a direct integration of column density along rays. After the primary massive star forms, we find that no secondary stars form for both the direct integration and density gradient approaches. The approximate method reduces the computation time by a factor of 2. The Jeans length approximation overestimates the H2 column density by a factor of 10, leading to five numerically enhanced self-shielded, star-forming clumps. We conclude that the density gradient approximation is sufficiently accurate for larger volume galaxy simulations, although one must still caution that the approximation cannot fully reproduce the result of direct integration.

Funder

Japan Society for the Promotion of Science

National Science Foundation

NASA

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3