Alignment of the magnetic field in star-forming regions and why it might be difficult to observe

Author:

Girichidis Philipp12ORCID

Affiliation:

1. Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

2. Institut für Theoretische Astrophysik, Zentrum für Astronomie, Universität Heidelberg, Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany

Abstract

ABSTRACT Magnetic fields are an important component of the interstellar medium (ISM) and exhibit strongly varying field strengths and a non-trivial correlation with the gas density. Its dynamical impact varies between individual regions of the ISM and correlates with the orientation of the field with respect to the gas structures. Using high-resolution magneto-hydrodynamical simulations of the ISM, we explore the connection between the orientation of the field and the dynamical state of the gas. We find that the onset of gravitational instability in molecular gas above a density of $\rho \sim 10^{-21}\, \mathrm{g\, cm}^{-3}$$(n\sim 400\, \mathrm{cm}^{-3})$ coincides with an alignment of the magnetic field lines and the gas flow. At this transition, the gradient of the density changes from mainly perpendicular to preferentially parallel to the field lines. A connection between the three-dimensional alignment and projected two-dimensional observables is non-trivial, because of a large dispersion of the magnetic field orientation along the line of sight. The turbulent correlation lengths can be small compared to the typical integration lengths. As a consequence, the small-scale signal of the orientation can sensitively depend on the line of sight or the dynamical state of the cloud can fluctuate stochastically or be completely averaged out. With higher spatial resolution more small-scale structures are resolved, which aggravates the link between magneto-hydrodynamical quantities and projected observables.

Funder

European Research Council

DOE

NNSA

ASC

ASCR

University of Chicago

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3