Stellar scattering and the formation of exponential discs in self-gravitating systems

Author:

Wu Jian1ORCID,Struck Curtis1ORCID,D’Onghia Elena2ORCID,Elmegreen Bruce G3ORCID

Affiliation:

1. Department of Physics and Astronomy, Iowa State University, 2323 Osborn Dr., Ames, IA 50011, USA

2. Department of Astronomy, University of Wisconsin-Madison, 475 N Charter St, Madison, WI 53706, USA

3. IBM Research Division, T.J. Watson Research Centre, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA

Abstract

ABSTRACT We show, using the N-body code gadget-2, that stellar scattering by massive clumps can produce exponential discs, and the effectiveness of the process depends on the mass of scattering centres, as well as the stability of the galactic disc. Heavy, dense scattering centres in a less stable disc generate an exponential profile quickly, with a time-scale shorter than 1 Gyr. The profile evolution due to scattering can make a near-exponential disc under various initial stellar distributions. This result supports analytic theories that predict the scattering processes always favour the zero entropy gradient solution to the Jeans/Poisson equations, whose profile is a near-exponential. Profile changes are accompanied by disc thickening, and a power-law increase in stellar velocity dispersion in both vertical and radial directions is also observed through the evolution. Close encounters between stars and clumps can produce abrupt changes in stellar orbits and shift stars radially. These events can make trajectories more eccentric, but many leave eccentricities little changed. On average, orbital eccentricities of stars increase moderately with time.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3