Synthetic evolution tracks of giant planets

Author:

Müller Simon1ORCID,Helled Ravit1

Affiliation:

1. Center for Theoretical Astrophysics and Cosmology Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Abstract

ABSTRACT Giant planet evolution models play a crucial role in interpreting observations and constraining formation pathways. However, the simulations can be slow or prohibitively difficult. To address this issue, we calculate a large suite of giant planet evolution models using a state-of-the-art planetary evolution code. Using these data, we create the python program planetsynth that generates synthetic cooling tracks by interpolation. Given the planetary mass, bulk and atmospheric metallicity, and incident stellar irradiation, the program calculates how the planetary radius, luminosity, effective temperature, and surface gravity evolve with time. We demonstrate the capabilities of our models by inferring time-dependent mass–radius diagrams, estimating the metallicities from mass–radius measurements, and by showing how atmospheric measurements can further constrain the planetary bulk composition. We also estimate the mass and metallicity of the young giant planet 51 Eri b from its observed luminosity. Synthetic evolution tracks have many applications, and we suggest that they are valuable for both theoretical and observational investigations into the nature of giant planets.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GASTLI;Astronomy & Astrophysics;2024-08

2. TOI-2374 b and TOI-3071 b: two metal-rich sub-Saturns well within the Neptunian desert;Monthly Notices of the Royal Astronomical Society;2024-06-08

3. An extended low-density atmosphere around the Jupiter-sized planet WASP-193 b;Nature Astronomy;2024-05-14

4. Uranus’s complex internal structure;Astronomy & Astrophysics;2024-04

5. Searching for Giant Exoplanets around M-dwarf Stars (GEMS) I: Survey Motivation;The Astronomical Journal;2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3