Using artificial intelligence and real galaxy images to constrain parameters in galaxy formation simulations

Author:

Macciò Andrea V123ORCID,Ali-Dib Mohamad12,Vulanovic Pavle12,Al Noori Hind1,Walter Fabian3,Krieger Nico3ORCID,Buck Tobias4ORCID

Affiliation:

1. New York University Abu Dhabi, PO Box 129188 Abu Dhabi, United Arab Emirates

2. Center for Astro, Particle and Planetary Physics (CAP3), New York University Abu Dhabi, United Arab Emirates

3. Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

4. Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

Abstract

ABSTRACT Cosmological galaxy formation simulations are still limited by their spatial/mass resolution and cannot model from first principles some of the processes, like star formation, that are key in driving galaxy evolution. As a consequence they still rely on a set of ’effective parameters’ that try to capture the scales and the physical processes that cannot be directly resolved in the simulation. In this study, we show that it is possible to use Machine Learning techniques applied to real and simulated images of galaxies to discriminate between different values of these parameters by making use of the full information content of an astronomical image instead of collapsing it into a limited set of values like size, or stellar/ gas masses. In this work, we apply our method to the NIHAO simulations and the THINGS and VLA-ANGST observations of H i maps in nearby galaxies to test the ability of different values of the star formation density threshold n to reproduce observed H i maps. We show that observations indicate the need for a high value of n ≳ 80 cm−3 (although the numerical value is model-dependent), which has important consequences for the dark matter distribution in galaxies. Our study shows that with innovative methods it is possible to take full advantage of the information content of galaxy images and compare simulations and observations in an interpretable, non-parametric, and quantitative manner.

Funder

NYU

New York University Abu Dhabi

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LMC stars and where to find them: inferring birth radii for external galaxies;Monthly Notices of the Royal Astronomical Society;2024-06-18

2. H i discs of L* galaxies as probes of the baryonic physics of galaxy evolution;Monthly Notices of the Royal Astronomical Society;2024-05-11

3. Quantitatively rating galaxy simulations against real observations with anomaly detection;Monthly Notices of the Royal Astronomical Society;2024-02-21

4. Machine learning for observational cosmology;Reports on Progress in Physics;2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3