Quantitatively rating galaxy simulations against real observations with anomaly detection

Author:

Jin Zehao12ORCID,Macciò Andrea V123ORCID,Faucher Nicholas4,Pasquato Mario12567ORCID,Buck Tobias89ORCID,Dixon Keri L12ORCID,Arora Nikhil1210ORCID,Blank Marvin12ORCID,Vulanovic Pavle12

Affiliation:

1. New York University Abu Dhabi , PO Box 129188, Saadiyat Island, Abu Dhabi , United Arab Emirates

2. Center for Astrophysics and Space Science (CASS), New York University Abu Dhabi , United Arab Emirates

3. Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg , Germany

4. Center for Cosmology and Particle Physics, Department of Physics, New York University , 726 Broadway, New York, New York 10003 , USA

5. Physics and Astronomy Department Galileo Galilei, University of Padova , Vicolo dell’Osservatorio 3, I-35122, Padova , Italy

6. Dèpartement de Physique , Universitè de Montrèal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 , Canada

7. Mila - Quebec Artificial Intelligence Institute , 6666 Rue Saint-Urbain, Montréal, QC H2S3H1 , Canada

8. Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen , Im Neuenheimer Feld 205, D-69120 Heidelberg , Germany

9. Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik , Albert-Ueberle-Straße 2, D-69120 Heidelberg , Germany

10. Department of Physics, Engineering Physics & Astronomy, Queen’s University , Kingston, ON K7L 3N6 , Canada

Abstract

ABSTRACT Cosmological galaxy formation simulations are powerful tools to understand the complex processes that govern the formation and evolution of galaxies. However, evaluating the realism of these simulations remains a challenge. The two common approaches for evaluating galaxy simulations is either through scaling relations based on a few key physical galaxy properties, or through a set of pre-defined morphological parameters based on galaxy images. This paper proposes a novel image-based method for evaluating the quality of galaxy simulations using unsupervised deep learning anomaly detection techniques. By comparing full galaxy images, our approach can identify and quantify discrepancies between simulated and observed galaxies. As a demonstration, we apply this method to SDSS imaging and NIHAO simulations with different physics models, parameters, and resolution. We further compare the metric of our method to scaling relations as well as morphological parameters. We show that anomaly detection is able to capture similarities and differences between real and simulated objects that scaling relations and morphological parameters are unable to cover, thus indeed providing a new point of view to validate and calibrate cosmological simulations against observed data.

Funder

NYU

CASS

GCS

Horizon 2020

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3